66 research outputs found

    A low-eccentricity migration pathway for a 13-h-period Earth analogue in a four-planet system

    Get PDF
    It is commonly accepted that exoplanets with orbital periods shorter than one day, also known as ultra-short-period (USP) planets, formed further out within their natal protoplanetary disks before migrating to their current-day orbits via dynamical interactions. One of the most accepted theories suggests a violent scenario involving high-eccentricity migration followed by tidal circularization. Here we present the discovery of a four-planet system orbiting the bright (V = 10.5) K6 dwarf star TOI-500. The innermost planet is a transiting, Earth-sized USP planet with an orbital period of ~13 hours, a mass of 1.42 \ub1 0.18 M⊕, a radius of 1.166−0.058+0.061R⊕ and a mean density of 4.89−0.88+1.03gcm−3. Via Doppler spectroscopy, we discovered that the system hosts 3 outer planets on nearly circular orbits with periods of 6.6, 26.2 and 61.3 days and minimum masses of 5.03 \ub1 0.41 M⊕, 33.12 \ub1 0.88 M⊕ and 15.05−1.11+1.12M⊕, respectively. The presence of both a USP planet and a low-mass object on a 6.6-day orbit indicates that the architecture of this system can be explained via a scenario in which the planets started on low-eccentricity orbits then moved inwards through a quasi-static secular migration. Our numerical simulations show that this migration channel can bring TOI-500 b to its current location in 2 Gyr, starting from an initial orbit of 0.02 au. TOI-500 is the first four-planet system known to host a USP Earth analogue whose current architecture can be explained via a non-violent migration scenario

    The First Habitable Zone Earth-Sized Planet From TESS II: Spitzer Confirms TOI-700 d

    Get PDF
    We present Spitzer 4.5 ÎŒm observations of the transit of TOI-700 d, a habitable-zone Earth-sized planet in a multiplanet system transiting a nearby M-dwarf star (TIC 150428135, 2MASS J06282325–6534456). TOI-700 d has a radius of 1.144^(+0.062)_(-0.061) R⊕ and orbits within its host star's conservative habitable zone with a period of 37.42 days (T_(eq) ~ 269 K). TOI-700 also hosts two small inner planets (R_b = 1.037^(+0.0065)_(-0.064) R⊕ and R_c = 2.65^(+0.16)_(-0.15) R⊕) with periods of 9.98 and 16.05 days, respectively. Our Spitzer observations confirm the Transiting Exoplanet Survey Satellite (TESS) detection of TOI-700 d and remove any remaining doubt that it is a genuine planet. We analyze the Spitzer light curve combined with the 11 sectors of TESS observations and a transit of TOI-700 c from the LCOGT network to determine the full system parameters. Although studying the atmosphere of TOI-700 d is not likely feasible with upcoming facilities, it may be possible to measure the mass of TOI-700 d using state-of-the-art radial velocity (RV) instruments (expected RV semiamplitude of ~70 cm s⁻Âč)

    TIC 168789840: A Sextuply-Eclipsing Sextuple Star System

    Full text link
    We report the discovery of a sextuply-eclipsing sextuple star system from TESS data, TIC 168789840, also known as TYC 7037-89-1, the first known sextuple system consisting of three eclipsing binaries. The target was observed in Sectors 4 and 5 during Cycle 1, with lightcurves extracted from TESS Full Frame Image data. It was also previously observed by the WASP survey and ASAS-SN. The system consists of three gravitationally-bound eclipsing binaries in a hierarchical structure of an inner quadruple system with an outer binary subsystem. Follow-up observations from several different observatories were conducted as a means of determining additional parameters. The system was resolved by speckle interferometry with a 0."42 separation between the inner quadruple and outer binary, inferring an estimated outer period of ~2 kyr. It was determined that the fainter of the two resolved components is an 8.217 day eclipsing binary, which orbits the inner quadruple that contains two eclipsing binaries with periods of 1.570 days and 1.306 days. MCMC analysis of the stellar parameters has shown that the three binaries of TIC 168789840 are "triplets", as each binary is quite similar to the others in terms of mass, radius, and Teff. As a consequence of its rare composition, structure, and orientation, this object can provide important new insight into the formation, dynamics, and evolution of multiple star systems. Future observations could reveal if the intermediate and outer orbital planes are all aligned with the planes of the three inner eclipsing binaries

    A planet within the debris disk around the pre-main-sequence star AU Microscopii

    Full text link
    AU Microscopii (AU Mic) is the second closest pre main sequence star, at a distance of 9.79 parsecs and with an age of 22 million years. AU Mic possesses a relatively rare and spatially resolved3 edge-on debris disk extending from about 35 to 210 astronomical units from the star, and with clumps exhibiting non-Keplerian motion. Detection of newly formed planets around such a star is challenged by the presence of spots, plage, flares and other manifestations of magnetic activity on the star. Here we report observations of a planet transiting AU Mic. The transiting planet, AU Mic b, has an orbital period of 8.46 days, an orbital distance of 0.07 astronomical units, a radius of 0.4 Jupiter radii, and a mass of less than 0.18 Jupiter masses at 3 sigma confidence. Our observations of a planet co-existing with a debris disk offer the opportunity to test the predictions of current models of planet formation and evolution.Comment: Nature, published June 24th [author spelling name fix

    An ultrahot Neptune in the Neptune desert

    Get PDF
    About 1 out of 200 Sun-like stars has a planet with an orbital period shorter than one day: an ultrashort-period planet. All of the previously known ultrashort-period planets are either hot Jupiters, with sizes above 10 Earth radii (R⊕), or apparently rocky planets smaller than 2 R⊕. Such lack of planets of intermediate size (the ‘hot Neptune desert’) has been interpreted as the inability of low-mass planets to retain any hydrogen/helium (H/He) envelope in the face of strong stellar irradiation. Here we report the discovery of an ultrashort-period planet with a radius of 4.6 R⊕ and a mass of 29 M⊕, firmly in the hot Neptune desert. Data from the Transiting Exoplanet Survey Satellite revealed transits of the bright Sun-like star LTT 9779 every 0.79 days. The planet’s mean density is similar to that of Neptune, and according to thermal evolution models, it has a H/He-rich envelope constituting 9.0^(+2.7)_(−2.9)% of the total mass. With an equilibrium temperature around 2,000 K, it is unclear how this ‘ultrahot Neptune’ managed to retain such an envelope. Follow-up observations of the planet’s atmosphere to better understand its origin and physical nature will be facilitated by the star’s brightness (V_(mag) = 9.8)
    • 

    corecore